Changes
== Պնդում 7 ==
Եթե երկու զուգահեռ ուղիղների վրա վերցրած պատահական կետերից երկուսը միացնենք, ապա ստացված ուղիղը, որը անցնում է այդ կետերով, կլինի նույն հարթության մեջ, ինչ երկու զուգահեռ ուղիղները։
[[Պատկեր:Նկար-1.png|center|200px300px]]
AB և CD երկու զուգահեռ ուղիղներ են, իսկ E և F կամայական կետեր են համապատասխանաբար AB և CD ուղիղներից։ Ուղիղը, որը միացնում է E և F կետերը, գտնվում է նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։
Եթե դա այդպես չէ, և հնարավոր է, որ ուղիղը անցնի ավելի բարձր հարթությամբ, թող դա լինի EGF հարթությունը։ Այսպիսով, այն կունենա ուղիղ հատված EF՝ հենակետային հարթության մեջ [Պնդ. 11.3]։ Հետևաբար, երկու ուղիղներ՝ EGF-ն և EF-ն (նույն E և F կետերով անցնող) կսահմանափակեն ինչ-որ տարածք, ինչը անհնար է։Հանգունորեն, E և F կետերով անցնող ուղիղը գտնվում է նույն հարթության մեջ, ինչ AB և CD զուգահեռ ուղիղները։
== Պնդում 8 ==
Եթե երկու ուղիղներ զուգահեռ են, և նրանցից մեկը ուղիղ անկյուն է կազմում ինչ որ հարթության հետ, ապա մյուս ուղիղը նույնպես ուղղահայաց կլինի այդ հարթությանը։
[[Պատկեր:Նկար-2.png|center|200px300px]]
AB և CD երկու զուգահեռ ուղիղներ են, և նրանցից մեկը՝ AB, լինի ուղղահայաց դիտարկվող հարթությանը։ Ապա, մյուսը՝ CD, նույնպես կլինի ուղղահայաց նույն հարթությանը։
Եվ քանի որ DE և DB ուղիղներով անցնող հարթությունը դիտարկվող հարթությունն է, CD ուղիղը ուղղահայաց է նաև դիտարկվող հարթությանը։
== Պնդում 9 ==
Երկու ուղիղներ զուգահեռ են երրորդ ուղղին որը նրանց հետ նույն հարթության մեջ չի գտնվում, ապա այդ ուղիղները միմյանց նկատմամբ նույնպես զուգահեռ են։
[[Պատկեր:Նկար-3.png|center|200px300px]]
AB և CD ուղիղներից յուրաքանչյուրը զուգահեռ է EF ուղղին, որը նույն հարթության մեջ չէ։ Ցույց տանք որ AB և CD ուղիղները զուգահեռ են։ Պատահականորեն վերցնենք մի G կետ EF ուղղի վրա։ GH ուղիղը EF ուղղի հետ կազմում է ուղիղ անկյուն EF և AB ուղիղներով անցնող հարթության մեջ։ Եվ EF-ն ուղղահայաց է GK ուղղին՝ FE և CD ուղիղներով անցնող հարթության վրա:
Եվ քանի որ EF ուղիղը ուղղահայաց է GH-ին և GK-ին, ապա EF-ն ուղղահայաց է նաև GH և GK ուղիղներով անցնող հարթությանը [Պնդ․ 11.4]: Եվ EF ուղիղը AB-ին զուգահեռ է: Ուստի AB-ն նույնպես ուղղահայաց է HGK հարթությանը [Պնդ․ 11.8]: Հանգունորեն CD-ն նույնպես ուղղահայաց է HGK հարթությանը:
== Պնդում 10 ==
Եթե երկու հատվող ուղիղներ զուգահեռ են այլ հարթության մեջ գտնվող երկու հատվող ուղիղների, ապա հարթությունները պարունակում են հավասար անկյուններ։
[[Պատկեր:Նկար-4.png|center|200px300px]]
Իրար միացած երկու ուղիղները՝ AB և BC, զուգահեռ են (համապատասխանաբար) միմյանց միացած երկու ուղիղների՝ DE և EF որոնք վերջիններս ընկած չեն AB և BC ուղիղներով անցնող հարթությանը ։Ցույց տանք, որ ABC անկյունը հավասար է DEF անկյանը:
BA, BC, ED և EF ուղիղները կտրենք (այնպես, որ համապատասխանաբար հավասար լինեն միմյանց): Միացնենք AD, CF, BE, AC և DF հատվածները:Եվ քանի որ BA ուղիղը հավասար և զուգահեռ է ED-ին, Հետևաբար AD ուղիղը, նույնպես հավասար և զուգահեռ է BE ուղղին [Պնդ. 1.33]: Հանգունորեն CF ուղիղը նույնպես հավասար և զուգահեռ է BE-ին: Այսպիսով, AD և CF հատվածներից յուրաքանչյուրը հավասար և զուգահեռ են BE-ին: Նույն ուղղին զուգահեռ ուղիղները, որոնք նրա հետ նույն հարթության մեջ չեն, զուգահեռ են միմյանց [Պնդ. 11.9]։ Այսպիսով, AD հատվածը զուգահեռ է և հավասար է CF-ին: AC և DF միացնենք նրանց: Այսպիսով, AC-ը նույնպես հավասար է և զուգահեռ DF հատվածին [Պնդ. 1.33]: Եվ քանի որ երկու հատվածներ AB-ն և BC-ն հավասար են երկու հատվածներին՝ DE-ին և EF-ին (համապատասխանաբար), իսկ AC հիմքը հավասար է DF հիմքին, այսպիսով ABC անկյունն հավասար է DEF անկյանը [Պնդ. 1.8]:
== Պնդում 11 ==
Կետից հարթությանը ուղղահայաց ուղղի կառուցումը։
[[Պատկեր:Նկար-11.png|center|200px300px]]
A կետը դիտարկվող կետն է: Այսպիսով, պահանջվում է ուղղահայաց ուղիղ գծել A կետից հարթությանը: Պատահական BC ուղիղ գծենք դիտարկվող հարթությունում, և AD ուղիղը գծենք BC-ին ուղղահայաց A կետից [Պնդ. 1.12]: Հետևաբար, եթե AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը, ապա տեղի կունենա այն, ինչ նախատեսված էր:Իսկ, եթե ոչ, D կետից՝ դիտարկվող հարթության մեջ BC ուղղին ուղահայաց DE ուղիղը գծենք [Պնդ. 1.11], և AF ուղիղը գծենք A կետից DE ուղղին ուղղահայաց վերջիններս կհատի DE ուղղին F կետում[Պնդ. 1.12], և F կետով անցնող GH ուղիղը գծենք, որը զուգահեռ է BC ուղղին [Պնդ. 1.31]:
Այսպիսով, GH ուղիղը ուղիղ անկյուն է կազմում իրեն միացած բոլոր ուղիղների հետ, որոնք նույնպես ED և AD ուղիղներով անցնող հարթության մեջ են [Սահմ. 11.3]: Եվ AF-ն, որը գտնվում է ED և AD ուղիղներով անցնող հարթության մեջ, միացված է այդ ուղղին: Այսպիսով, GH և AF ուղիղներըուղղահայաց են: Հետևաբար, AF-ն ուղղահայաց է HG ուղղին: AF-ն նույնպես ուղղահայաց է DE ուղղին: Այսպիսով, AF-ն ուղղահայաց է GH և DE ուղիղներից յուրաքանչյուրին: Եվ եթե ուղիղը կազմում են ուղիղ անկյուն երկու հատվող ուղիղների հետ, ապա այն ուղղահայաց կլինի այդ ուղիղներով անցնող հարթությանը [Պնդ. 11.4]: Այսպիսով, FA-ն ուղղահայաց է ED և GH ուղիղներով անցնող հարթությանը: Իսկ ED-ի և GH-ի ուղիղներով անցնող հարթությունը հենց դիտարկվող հարթությունն էր: Այսպիսով, AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը:
== Պնդում 12 ==
Տվյալ կետից, դիտարկվող հարթությանը տարված ուղղահայացի կառուցումը։
[[Պատկեր:Նկար-12.png|center|200px300px]]
Տրված հարթությունը դիտարկվող հարթությունն է, իսկ A-ն այդ հարթությանը պատկանող կետ: Այսպիսով, պահանջվում է A կետով անցնող և դիտարկվող հարթությանը ուղղահայաց ուղիղ կառուցել:Կամայական B կետից տանենք ուղղահայաց դիտարկվող հարթությանը, որը կհատի հարթությունը C կետում [Պնդ. 11.11]: BC-ին զուգահեռ և A կետով անցնող ուղիղ գծենք AD-ն [Պնդ. 1.31]:Քանի որ AD-ն և CB-ն երկու զուգահեռ ուղիղներ են, և դրանցից մեկը՝ BC-ն, ուղղահայաց է դիտարկվող հարթությանը հետևաբար, AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը [Պնդ. 11.8]:
== Պնդում 13 ==
Երկու տարբեր ուղիղներ չեն կարող անցնել մի կետով և միևնույն ժամանակ ուղղահայաց լինել նույն հարթության նույն կողմին։
[[Պատկեր:Նկար-13.png|center|200px300px]]
Ենթադրենք հնարավոր է, ուրեմն երկու ուղիղներ AB և AC տեղադրենք միևնույն A կետում՝ դիտարկվող հարթությանը ուղղահայաց: Գծենք BA և AC ուղիղներով անցնող հարթություն: Այսպիսով, այն կհատի դիտարկվող հարթությունը A կետով անցնող DAE ուղղով[Պնդ. 11.3]: Այսպիսով, AB, AC և DAE ուղիղները ընկած են մեկ հարթության մեջ, և քանի որ CA-ն ուղղահայաց է դիտարկվող հարթությանը, այդպիսով այն նաև ուղղահայաց է դիտարկվող հարթության մեջ գտնվող բոլոր ուղիղներին[Պնդ. 11.3]: DAE-ն, որը գտնվում է դիտարկվող հարթության մեջ, միացված է դրան։Հետևաբար, CAE անկյունը ուղիղ է: Հանգունորեն BAE անկյունը նույնպես ուղիղ է։ Այսպիսով, CAE անկյունը հավասար է BAE անկյանը: Եվ նրանք մեկ հարթության մեջ են։ Ինչը անհնար է։
== Պնդում 14 ==
Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա միմյանց զուգահեռ են։
[[Պատկեր:Նկար-14.png|center|200px300px]]
AB-ն կամայական ուղիղ է որը ուղղահայաց է CD և EF հարթություններին։ Ցույց տանք, որ այդ հարթությունները զուգահեռ են։
AB-ն ուղղահայաց է EF հարթությանը և BK ուղղին։Հետևաբար, ABK անկյունը ուղիղ է: Նույն պատճառներով BAK անկյունը նույնպես ուղիղ է։ Այսպիսով, ABK եռանկյան ABK և BAK երկու անկյունը ուղիղ են: Ինչը անհնար է [Պնդ. 1.17]:Հետևաբար, CD և EF հարթությունները, չեն հատվում՝ CD և EF հարթությունները զուգահեռ են [Սահմ. 11.8]:
== Պնդում 15 ==
Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ են:
[[Պատկեր:Նկար-15.png|center|200px300px]]
AB և BC հատվող ուղիղները, զուգահեռ են երկու հատվող ուղիղների՝ DE և EF որոնք չեն գտնվում նույն հարթության մեջ։ Ցույց տանք, որ AB, BC և DE, EF ուղիղներով անցնող հարթությունները չեն հատվում:BG-ն, B կետից DE և EF ուղիղներով անցնող հարթությանը ուղղահայաց ուղիղ է [Պնդ. 11.11],վերջինիս հատում է հարթությունը G կետում : GH-ն G-ի կետով անցնող և ED ուղղին զուգահեռ ուղիղ է, GK ուղիղը զուգահեռ EF-ին [Պնդ. 1.31]:Եվ քանի որ BG-ն ուղղահայաց է DE և EF ուղիղներով անցնող հարթությանը, այդպիսով այն նաև ուղղահայաց կլինի բոլոր այն ուղիղներին որոնք պատկանում են այդ հարթությանը[Սահմ. 11.3]: Եվ GH և GK ուղիղներից յուրաքանչյուրը, որոնք գտնվում են DE և EF ուղիղներով անցնող հարթության մեջ, միացված են BG ուղղին: Այսպիսով, BGH և BGK անկյունները ուղիղ են: Եվ քանի որ BA-ն զուգահեռ է GH-ին [Պնդ. 11.9], GBA և BGH անկյունները ուղիղ են[Պնդ. 1.29]: Անկյուն BGH նույնպես ուղիղ է։Անկյուն GBA-ն ուղիղ է: GB-ն ուղղահայաց է BA-ին: Այսպիսով, նույն կերպ GB-ն ուղղահայաց է BC-ին։ Հետևաբար GB ուղիղը ուղղահայաց է՝ BA և BC ուղիղներին,այսպիսով GB-ն ուղղահայաց է BA և BC ուղիղներով անցնող հարթությանը [Պնդ. 11.4]:Իսկ հարթությունները, որոնց նույն ուղիղը ուղղահայաց է, զուգահեռ են [Պնդ 11.14]: Այսպիսով, AB և BC ուղիղներով անցնող հարթությունը զուգահեռ է DE և EF ուղիղներով անցնող հարթությանը:
== Պնդում 16 ==
Եթե երկու զուգահեռ հարթություններ հատվում են ինչ-որ հարթությամբ, ապա առաջացած ուղիղները զուգահեռ են։
[[Պատկեր:Նկար-16.png|center|200px300px]]
Երկու զուգահեռ հարթություններ AB և CD հատվում են EFGH հարթությամբ։ Իսկ EF և GH ուղիղները հատումից հառաջացած ուղիղներն են։ Ցույց տանք որ EF և GH ուղիղները զուգահեռ են։ Հակառակ դեպքում, EF-ն և GH-ը կհատվեն կա՛մ F, H, կա՛մ E, G-ի ուղղությամբ: Ենթադրենք հատվում են K կետում՝ F, H-ի ուղղությամբ: Եվ քանի որ EFK ուղիղը ընկած է AB հարթության մեջ, հետևաբար EFK ուղղի բոլոր կետերը ընկած են այդ հարթության մեջ [Պնդ. 11.1]։ Իսկ K-ն EFK ուղղին պատկանող կետերից մեկն է։ Հետևաբար, K-ն AB հարթությանը պատկանող կետ է: Նույն պատճառներով K-ն նաև CD-ին պատկանող կետ է։ Այսպիսով, AB և CD հարթությունները հատվում են։ Բայց նրանք չեն հատվում, քանի որ ի սկզբանե ենթադրվում էր զուգահեռությունը: Այսպիսով, EF և GH ուղիղները, F, H ուղղությամբ, չեն հատվում:Հանգունորեն, մենք կարող ենք ցույց տալ, որ EF և GH ուղիղները, E, G ուղղությամբ, նույնպես չեն հատվում [Սահ. 1.23]:Ստացվում է, որ EF-ը զուգահեռ է GH-ին:
== Պնդում 17 ==
Եթե երկու ուղիղներ կտրվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերվեն հավասարապես:
[[Պատկեր:Նկար-17.png|center|200px300px]]
Երկու ուղիղներ AB և CD հատվում են GH, KL և MN զուգահեռ հարթություններով A, E, B և C, F, D կետերում համապատասխանաբար: Ցույց տանք, որ ուղիղ AE հարաբերում է EB-ին, այնպես ինչպես CF-ն FD-ին:
Քանի որ OF ուղիղը եռանկյունի ADC-ի AC կողմին զուգահեռ է, հետևաբար AO-ն հարաբերում է OD-ին, այնպես ինչպես CF-ը FD-ին [Պնդ. 6.2]: Հանգունորեն AO հարաբերում է OD այնպես, ինչպես AE-ն, EB-ին, ինչպես CF-ն, FD-ին:
== Պնդում 18 ==
Եթե ուղիղն ուղղահայաց է ինչ-որ հարթությանը, ապա այդ ուղղով անցնող բոլոր հարթությունները նույնպես ուղղահայաց կլինեն դիտարկվող հարթությանը:
[[Պատկեր:Նկար-18.png|center|200px300px]]
Ենթադրենք AB ուղիղը ուղղահայաց է դիտարկվող հարթությանը:Ցույց տանք, որ բոլոր հարթությունները որոնք անցնում են AB-ով նույնպես ուղղահայաց են դիտարկվող հարթությանը:
Եվ քանի որ AB-ն ուղղահայաց է դիտարկվող հարթությանը, որը նաև ուղղահայաց է նրան միացված բոլոր ուղիղներին, որոնք նույնպես գտնվում են դիտարկվող հարթության մեջ [Սահմ. 11.3]: Հետևաբար, այն նաև ուղղահայաց է CE ուղղին: ABF անկյունը ուղիղ է: Ինչպես նաև անկյուն GFB-ն նույնպես ուղիղ է: Այսպիսով, AB-ն զուգահեռ է FG-ին [Պնդ. 1.28]: Իսկ AB-ն ուղղահայաց է դիտարկվող հարթությանը: FG նույնպես ուղիղ անկյուն է կազմում դիտարկվող հարթության հետ [Պնդ. 11.8]:Վերջինիս հարթությունը ուղղահայաց է մյուս հարթությանը: Իսկ FG ուղիղը, ուղղահայաց է CE ընդհանուր ուղղին: DE հարթությունը ուղղահայաց է դիտարկվող հարթությանը: Հանգունորեն, կարելի է ցույց տալ, որ բոլոր հարթությունները որոնք անցնում են AB ուղղով ուղղահայաց են դիտարկվող հարթությանը:
== Պնդում 19 ==
Եթե երկու հարթությունները հատում են երրորդ հարթությունը և ուղղահայաց են նրան ապա այդ հարթությունների հատումից առաջացած ուղիղը նույնպես ուղղահայաց է երրորդ հարթությանը։
[[Պատկեր:Նկար-19.png|center|200px300px]]
Ենթադրենք AB և BC հարթությունները ուղղահայաց են դիտարկվող հարթությանը, և հատվում են BD ուղղով։ Ցույց տանք որ BD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը։
Գիտենք որ AB հարթությունը ուղղահայաց է դիտարկվող հարթությանը, և ստացանք որ DE ուղղահայաց է AD հատման ուղղին, հետևաբար DE ուղիղը ուղղահայաց է դիտարկվող հարթությանը։ Նման կերպ կարող ենք ցույց տալ որ DF ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը։ Հետևաբար միևնույն D կետով անցնող երկու տարբեր ուղիղներ ուղղահայաց են նույն դիտարկվող հարթությանը, նույն կողմից։ Ինչը անհնար է [Սահմ. 11.13]։ Այսպիսով բացի AB և BC հարթությունների հատման ուղղից՝ DB-ից անհնար է D կետով անցնող և դիտարկվող հարթությանը ուղղահայաց ուղիղ գծել։
== Պնդում 20 ==
Եթե անկյունը կազմված է երեք հարթ անկյուններով ապա նրանցից ցանկացած երկուսի գումարը մեծ է երրորդից։
[[Պատկեր:Նկար-20.png|center|200px300px]]
Ենթադրենք, A մարմնային անկյունը որոշվում է երեք հարթ անկյուններով՝ BAC, CAD և DAB: Ցույց տանք, որ BAC, CAD և DAB անկյուններից ցանկացած երկուսի գումարը ավելի մեծ է, քան երրորդ անկյունը:
Եվ քանի որ DA-ն հավասար է AE-ին, իսկ AB կողմը ընդհանուր է, հետևաբար AD և AB հատվածները հավասար են EA և AB հատվածներին համապատասխանաբար: DAB անկյունը հավասար է BAE անկյան: Այսպիսով, DB հիմքը հավասար է BE հիմքին [Պնդ. 1.4]. Քանի որ BD-ի և DC-ի հատվածների գումարը մեծ է BC-ից, որոնցից DB-ն հավասար է BE հատվածին, և DC-ն ավելի մեծ է քան EC հատվածը: Եվ քանի որ DA-ն հավասար է AE-ին, իսկ AC ընդհանուր է, և DC հիմքը մեծ է EC հիմքից, հետևաբար DAC անկյունն ավելի մեծ է, քան EAC անկյունը [Պնդ. 1.25]: Իսկ DAB-ը հավասար է BAE-ին: Այսպիսով, DAB-ի և DAC-ի գումարը մեծ է BAC-ից: Հանգունորեն կարող ենք ցույց տալ որ մնացած անկյունները, զույգերով վերցված, ավելի մեծ են երրորդը:
== Պնդում 21 ==
Մարմնային անկյունը կառուցվում է հարթ անկյուններով որոնց գումարը փոքր է չորս ուղիղ անկյուններից։<ref>''Այս պնդումը ապացուցված է միայն երեք հարթ անկյուններով անցնող մարմնային անկյան համար: Այնուամենայնիվ, ընդհանուր դեպքում մարմնային անկյունը որը
պարունակում է ավելի քան երեք հարթ անկյուն պարզ է''</ref>
Ենթադրենք A անկյունը կառուցվում է BAC, CAD և DAB հարթ անկյուններով:Ցույց տանք, որ BAC, CAD և DAB անկյունների գումարը չորս ուղիղ անկյունների գումարից փոքր է:
Վերցնենք B, C և D կամայական կետերը AB, AC և AD ուղիղներից յուրաքանչյուրի վրա համապատասխան: Քանի որ B մարմնային անկյունը պարունակում է CBA, ABD և CBD երեք հարթ անկյունները, ապա ցանկացած երկուսի գումարը մեծ է երրորդից [Պնդ. 11.20]։ Այսպիսով, CBA և ABD անկյունների գումարը ավելի մեծ է, քան CBD-ն: Այսպիսով, նույն կերպ BCA-ի և ACD-ի գումարը մեծ է BCD-ից, իսկ CDA-ի և ADB-ի գումարը մեծ է, CDB-ից: Այսպիսով, CBA, ABD, BCA, ACD, CDA և ADB վեց անկյունների գումարը ավելի մեծ է, քան երեք անկյունների գումարը CBD, BCD և CDB: Բայց երեք անկյունների գումարը CBD, BDC և BCD հավասար է երկու ուղիղ անկյունների[Պնդ. 1.32]: Այսպիսով, CBA, ABD, BCA, ACD, CDA և ADB վեց անկյունների գումարը մեծ է երկու ուղիղ անկյուննեից: Եվ քանի որ ABC, ACD և ADB եռանկյուններից յուրաքանչյուրի երեք անկյունների գումարը հավասար է երկու ուղիղ անկյունների, ապա ինը անկյունների գումարը СВА, АСВ, ВAC, ACD, CDA, CAD, ADB, DBA և BAD երեք եռանկյուններից հավասար են վեց ուղիղ անկյունների գումարին, որոնցից վեց անկյունների գումարը ABC, BCA, ACD, CDA, ADB, DBA ավելի մեծ է, քան երկու ուղիղ անկյունները: Այսպիսով, մնացած երեք անկյունների գումարը BAC, CAD և DAB, որոնք վերջիններս կառուցում են մարմնային անկյունը, փոքր է չորս ուղիղ անկյուններից:
== Պնդում 22 ==
Եթե երեք հարթ անկյուններից ցանկացած երկուսի գումարը մեծ է երրորդից և հատվածները հավասար են միմյանց ապա ամենայն հավանականությամբ այդ հատվածներով կարելի է կառուցել եռանկյուն։
[[Պատկեր:Նկար-21.png|center|200px400px]]
Ենթադրենք ABC, DEF, և GHK հարթ անկյուններ են որոնց ցանկացած երկուսի գումարը ավելի մեծ է քան երրորդը։ AB, BC, DE, EF, GH, և HK հավասար հատվածներ են։Միացնենք AC,DF և GK հատվածները։ Այժմ ցույց տանք որ հնարավոր է կառուցել եռանկյուն որի կողմերը հավասար են AC, DF և GK հատվածներին, ասել է թե ցանկացած երկուսի գումարը մեծ է երրորդից։ ABC, DEF և GHK անկյունները հավասար են՝ ստացվում է, որ AC, DF, GK հատվածները հավասարվում են և հնարավոր է լինում կառուցել եռանկյուն այդ հատվածներով։ Հակառակ դեպքում եթե նրանք հավասար չեն և KHL անկյունը հավասար է ABC անկյանը։ Ենթադրենք որ HL հատվածը հավասար է AB, BC, DE, EF, GH, HK հատվածներից մեկին։ Միացնենք KL-ն GL-ին։ Քանի որ AB և BC հատվածները հավասար են համապատասխանաբար KH և HL հատվածներին և անկյուն B հավասար է KHL-ին և AC-ն հավասար է KL հիմքին։ ABC և GHK անկյունների գումարը մեծ է DEF-ից, և ABC հավասար է KHL, GHL անկյուններին որոնք իրենց հերթին մեծ են DEF անկյունից։ Եվ քանի որ GH և HL կողմերը հավասար են համապատասխանաբար DE և EF հատվածներին,GHL անկյունը մեծ է DEF-ից ստացվում է որ GL հիմքը մեծ է DF հիմքից[Պնդ. 1.24]։ GK և KL հատվածների գումարը մեծ է GL-ից [Պնդ. 1.20]։Հետևաբար GK և KL հատվածների գումարը մեծ է DF-ից, KL հավասար է AC-ին։ Այդ իսկ պատճառով AC և GK հատվածների գումարը մեծ է DF-ից։
== Պնդում 23 ==
Մարմնային անկյուն կառուցելու համար պետք է երեք հարթ անկյուններ, որոնցից երկուսի գումարը մեծ է երրորդից։ Այսպիսով, անհրաժեշտ է, որ այդ անկյունների գումարը փոքր լինիչորս ուղիղ անկյունների գումարից։
[[Պատկեր:Նկար-23.png|center|200px400px]]
Տրված են ABC, DEF և GHK երեք հարթ անկյուններ, որոնցից երկուսի գումարը մեծ է երրորդից, իսկ երեքի գումարը չորս ուղիղ անկյուններից փոքր է։ Այսպիսով, անհրաժեշտ է կառուցել մարմնային անկյուն՝ հարթ անկյուններից։
LMN եռանկյունը կառուցենք այնպես, որ AC-ը հավասար է LM-ին, DF-ն՝ MN-ին, և GK-ն՝ NL-ին։ LMN կետերով շրջան գծենք LMN եռանկյան շուրջը Օ կենտրոնով։ Միացնենք LO, MO և NO շառավիղները։
[[Պատկեր:Նկար-23-2.png|center|200px300px]]
Ցույց տանք, որ AB-ն ավելի մեծ է, քան LO-ն,հակառակ ենթադրությամբ AB-ն կամ հավասար է LO-ին, կամ փոքր է նրանից։ Ենթադրենք հավասար է։Քանի որ AB-ն հավասար է LO-ին, AB-ն նաև հավասար է BC-ին, իսկ OL-ը՝ OM-ին, ուստի AB և BC համապատասխանաբար հավասար են LO-ին և OM-ին։ Իսկ AC հիմքը ենթադրվում էր հավասար LM հիմքին։ Այդ իսկ պատճառով ABC անկյունը հավասար է LOM անկյանը [Պնդ. 1.8]:
Եվ քանի որ LR և RM երկու գծերը հավասար են AB և BC-ին համապատասխանաբար, և LM հիմքը հավասար է AC հիմքին, ապա LRM անկյունը հավասար է ABC անկյանը։
=== Լեմմա ===
[[Պատկեր:Լեմմա.png|center|200px300px]]
Եվ այսպես, մենք կարող ենք ցույց տալ, թե ինչպես վերցնենք OR-ը այնպես, որ դրա քառակուսին հավասար լինի այն մակերեսին, որով AB-ի քառակուսին ավելի մեծ է LO-ի քառակուսուց։
Հիմա եթե OR-ը վերցնենք այնպես, որ այն հավասար լինի CB-ին, ապա AB-ի քառակուսին կլինի հավասար LO-ի և OR-ի քառակուսիների գումարին։
== Պնդում 24 ==
Եթե բազմանիստը բախկացած է 6 զուգահեռ հարթություններից որոնք և հատումներից առաջացնում են հակադիր հավասար զուգհեռագծեր։
[[Պատկեր:Նկար-24.png|center|200px300px]]
CDHG բազմանիստը կազմված է երկու զուգահեռ հարթություններով AC, GF և AH, DF և BF,AE։ Ցույց տանք որ հակադիր հարթությունները հավասար զուգահեռագծեր են։
A միացնենք H-ն և D միացնենք F-ն: Եվ քանի որ AB-ը զուգահեռ է DC-ին, իսկ BH-ն՝ CF-ին, ուստի երկու հատվածները՝ AB և BH, զուգահեռ են միմյանց միացող այլ հարթության մեջ ընկած երկու ուղիղ գծերին՝ DC-ին և CF-ին։ Հետևաբար նրանք կպարունակեն հավասար անկյուններ: ABH անկյունը հավասար է DCF անկյանը: Եվ քանի որ երկու հատվածներ ՝ AB և BH հավասար են երկու հատվածների DC-ին և CFին, իսկ ABH անկյունը հավասար է DCF անկյան, հետևաբար,AH հիմքը հավասար է հիմքի DF-ին, իսկ ABH եռանկյունը հավասար է DCF եռանկյանը: Այսպիսով, BG զուգահեռագիծը հավասար է CE զուգահեռագծին: Մենք կարող ենք ցույց տալ, որ AC-ը նույնպես հավասար է GF-ին, իսկ AE-ն՝ BF-ին:
== Պնդում 25 ==
Եթե զուգահեռանիստը հատվում է զուգահեռ հարթություններով որոնք հակադիր են բազմանիստի հիմքին ապա առաջացած մարմինները կլինեն կրկին զուգահեռանիստեր։
[[Պատկեր:Նկար-25.png|center|200px300px]]
ABCD զուգահեռագիծը հատենք FG հարթությամբ որը զուգահեռ է RA և DH հարթություններին։ Ցույց տանք որ AEFV հիմքը հարաբերում է EHCF հիմքին այնպես ինչպես ABFU զուգահեռագծի ծավալը EGCD զուգահեռագծի ծավալին։
AK և KL գծենք հավասար AE հատվածին, նման կերպ HM և MN գծենք հավասար EH-ին։ Եվ քանի որ LK, KA և AE հատվածները հավասար են, LP, KV և AF զուգահեռագծերը նույնպես հավասար են։ KO, KB և AG հավասար են, նաև LX, KQ և AR հավասար են: Այսպիսով, նույն կերպ EC, HW և MS զուգահեռագծերը նույնպես հավասար են, իսկ HG, HI և IN հավասար են, ինչպես նաև DH, MY և NT հատվածներն են հավասար: Այսպիսով, զուգահեռանիսների երեք հարթությունները LQ, KR և AU հավասար են մյուս զուգահեռանիսի երեք հարթություններին: Բացի այդ վերոնշյալ երեք հարթությունները հավասար են երեք հակադիր հարթություններին: Այսպիսով, զուգահեռանիսները LQ, KR և AU հավասար են միմյանց: Նույն կերպ երեք զուգահեռանիստերը ED, DM և MT նույնպես հավասար են: Այսպիսով LF հիմքը հարաբերում է AF հիմքին այնպես ինչպես LU զուգահեռանիստը AU-ի: Հանգունորեն որքան NF հիմքը հարաբերում է FHին , այնպես ինչպես NU զուգահեռանիստը HU-ինին։<ref>''Այստեղ Էվկլիդեսը համարում է, որ LF >=< NF հանգունորեն LU >=< NU: Սա հեշտությամբ կարելի է ցույց տալ''</ref> Եթե հիմք LF-ն հավասար է NF հիմքին, ապա LU զուգահեռանիստը նույնպես հավասար է NU զուգահեռանիստին: Սակայն եթե LF փոքր է NF-ից, ապա LU-ն փոքր է NU-ից: Այսպիսով, կան չորս մեծություններ՝ երկու հիմքերը՝ AF և FH, և երկու զուգահեռանիստ՝ AU և UH, որոնք վերջինս հարաբերում են նույն կերպ:Ցույց տվեցինք, որ եթե LF հիմքը մեծ է FN հիմքից, ապա LU զուգահեռանիստը նույնպես մեծ է NU-ից,նույն կերպ հավասարման դեպքում նրանք հավասարվում են: ''Այսպիսով, AF հիմքը հարաբերում է FH հիմքին այնպես ինչպես AU զուգահեռանիստը UH-ին։Ինչը պահանջվում էր ցույց տալ:'' <ref>''Այստեղ Էվկլիդեսը համարում է, որ LF >=< NF հանգունորեն LU >=< NU: Սա հեշտությամբ կարելի է ցույց տալ''</ref>
Այսպիսով, AF հիմքը հարաբերում է FH հիմքին այնպես ինչպես AU զուգահեռանիստը UH-ին։Ինչը պահանջվում էր ցույց տալ:
== Պնդում 26 ==
Մարմնային անկյան կառուցունը որը հավասար է տրված մարմնային անկյանը և անցնում է տրված ուղղի տրված կետով։
Ենթադրենք AB-ն տրված ուղիղն է, իսկ A-ն տրված կետը, և D-ն տրված մարմնային անկյունը որը վերջիններս պատկանում է EDC, EDF, FDC հարթ անկյուններին։Այսպիսով անհրաժեշտ է կառուցել մարմնային անկյունը որը կանցնի AB ուղղի A կետով և հավասար կլինի տրված D մարմնային անկյանը։
[[Պատկեր:Նկար-26.png|center|200px300px]]
Կամայական F կետ վերցնենք DF ուղղի վրա, իսկ FG ուղիղը գծենք F կետից ուղղահայաց ED և DC ուղիղներով անցնող հարթությանը, վերջինիս կհատի հարթությունը G կետում: BAL անկյունը, որը հավասար է EDC անկյան, և BAK անկյունը, հավասար է EDG-ին, կառուցված են AB ուղղի A կետով: AK հավասար է DG-ին: KH-ն անցնում է K կետով և ուղղահայաց է B, A, L կետերով անցնող հարթությանը: KH-ն հավասար GF-ին։Ցույց տանք, որ A կետով անցնող մարմնային անկյունը, որը պարունակում է BAL, BAH և HAL հարթ անկյունները, հավասար է D-իմարմնային անկյանը, որը վերջինիս պարունակում է EDC, EDF և FDC հարթ անկյունները:
AB-ն և DE-ն հատվում են այնպես որ առաջացած հատվածները լինեն հավասար: Քանի որ FG-ն ուղղահայաց է դիտարկվող հարթությանը, այն նաև ուղղահայաց կլինի դիտարկվող հարթությանը պատկանող բոլոր ուղիղներին: Այսպիսով, FGD և FGE անկյունները ուղիղ անկյուններ են: Նույն կերպ HKA և HKB անկյունները նույնպես ուղիղ են: Եվ քանի որ երկու հատվածներ՝ KA և AB հավասար են երկու հատվածների GD-ին և DET-ին, և նրանք պարունակում են հավասար անկյուններ, ուստի KB հիմքը հավասար է GE հիմքին։ KH-ն հավասար է GF-ին։ Իսկ դրանք պարունակում են ուղիղ անկյուններ: Այսպիսով, HB նույնպես հավասար է FE-ին։ Եվ քանի որ երկու հատվածներ AK և KH հավասար են DG և GF հատվածներին համապատասխանաբար, և դրանք պարունակում են ուղիղ անկյուններ, հետևաբար AH հիմքը հավասար է FD հիմքին։ AB հատվածը հավասար է DE-ին: Երկու HA և AB հատվածները հավասար են DF-ին և DE-ին համապատասխանաբար: Իսկ HB հիմքը հավասար է FE հիմքին։ Այսպիսով, BAH անկյունը հավասար է EDF անկյանը: Նույն կերպ HAL անկյունը հավասար է FDC-ին, իսկ BAL-ը հավասար է EDC-ին:
== Պնդում 27 ==
Կառուցել տրված գծից տրված զուգահեռանիստին համաչափ զուգահեռահեռանիստ։
Ենթադրենք տրված ուղիղը AB-ն է, իսկ տրված զուգահեռանիստը CD-ն: Այսպիսով, անհրաժեշտ է կառուցել տրված ուղղի՝ AB-ի վրա տրված զուգահեռանիստի՝ CD-ին նման զուգահեռանիստ:
[[Պատկեր:Նկար-27.png|center|200px300px]]
AB ուղիղ գծի վրա՝ A կետում BAH, HAK և KAB հարթ անկյուններով կազմված մարմնային անկյունը հավասար է C մարմնային անկյանը, BAH անկյունը հավասար է ECF-ին, և BAK-ը` ECG-ին և KAH-ը՝ GCF-ին: EC-ն հարաբերում է CG-ին, այնպես ինչպես BA-ն՝ AK-ին, և ինչպես GC-ն՝ CF-ին, ինչպես KA-ն՝ AH-ին: Լրացնենք HB զուգահեռանիստը։
Եվ քանի EC-ն հարաբերում է CG-ին, այնպես ինչպես BA-ն՝ AK-ին, և ECG և BAK հավասար անկյունների դիմացի կողմերը հարաբերում են նույն կերպ, ուստի GE զուգահեռագիծը նման է KB զուգահեռագծին: Հանգունորեն KH զուգահեռագիծը նման է GF զուգահեռագծին, FE-ն էլ՝ HB-ին: Այսպիսով, CD զուգահեռանիստի երեք զուգահեռագծերը նման են AL զուգահեռանիստի երեք զուգահեռագծերին: Նաև առաջին զուգահեռանիստի երեքը հակադիր զուգահեռագծերը նման են, մյուս երեքը հակադիր զուգահեռագծերին։ Այսպիսով, CD զուգահեռանիստը նման է AL զուգահեռանիստին։
== Պնդում 28 ==
Եթե զուգահեռանիստը անկյունագծային հարթությամբ հատենք, ապա զուգահեռանիստը կկիսվի։
AB զուգահեռանիստը հատենք CDEF հարթությամբ, որը անցնում է CF և DE անկյունագծերով:Ցույց տանք, CDEF հարթությունը կկիսի AB զուգահեռանիստը: [[Պատկեր:Նկար-28.png|center|200px]] Քանի որ CGF եռանկյունը հավասար է CFB եռանկյունին, ADE հավասար է DEH-ին, իսկ CA զուգահեռագիծը հավասար է EB-ին, քանի որ նիստերը հակադիր են, հանգունորեն GE նիստը հավասար է CH-ին, հետևաբար, պրիզման, որը պարունակում է երկու եռանկյուններ CGF և ADE, և երեք զուգահեռագծեր GE, AC և CE, հավասար է CFB և DEH երկու եռանկյուններ պարունակվող պրիզմային, և երեք զուգահեռագծերի՝ CH, BE և CE:Այդ եռանկյունները ընկած են հարթությունների մեջ որոնք հավասար։ ''Այսպիսով, ամբողջ զուգահեռանիստը կիսվում է CDEF հարթությամբ: Ինչ պահանջվում էր ցույց տալ:'' անկյունագծերով։<ref>''Ենթադրվում է, որ երկու անկյունագծերը ընկած են նույն հարթության մեջ: Հեշտ կարելի է ցույց տալ:''</ref> <ref>''ՍակայնՑույց տանք, կոպիտ ասած, պրիզմաները CDEF հարթությունը կկիսի դասավորված չեն նման կերպ, լինելով միմյանց հայելային պատկերներAB զուգահեռանիստը:''</ref>
[[Պատկեր:Նկար-28.png|center|300px]]
Քանի որ CGF եռանկյունը հավասար է CFB եռանկյունին, ADE հավասար է DEH-ին, իսկ CA զուգահեռագիծը հավասար է EB-ին, քանի որ նիստերը հակադիր են, հանգունորեն GE նիստը հավասար է CH-ին, հետևաբար, պրիզման, որը պարունակում է երկու եռանկյուններ CGF և ADE, և երեք զուգահեռագծեր GE, AC և CE, հավասար է CFB և DEH երկու եռանկյուններ պարունակվող պրիզմային, և երեք զուգահեռագծերի՝ CH, BE և CE:Այդ եռանկյունները ընկած են հարթությունների մեջ որոնք հավասար։<ref>''Սակայն, կոպիտ ասած, պրիզմաները դասավորված չեն նման կերպ, լինելով միմյանց հայելային պատկերներ:''</ref>
Այսպիսով, ամբողջ զուգահեռանիստը կիսվում է CDEF հարթությամբ: Ինչ պահանջվում էր ցույց տալ:
== Պնդում 29 ==
Զուգահեռանիստերը որոնք ընկած են նույն հիմքի վրա և ունեն հավասար բարձրություններ, ապա նրանք հավասար են միմյանց։
[[Պատկեր:Նկար-29.png|center|200px300px]]
Ենթադրենք CM և CN զուգահեռագծերը ընկած են նույն AB հիմքի վրա և ունեն նույն բարձրությունը, AG, AF, LM, LN, CD, CE, BH, և BK-ն ընկած են նույն ՝ FN և DK ուղիղների վրա։Ցույց տանք որ CM և CN զուգահեռանիստերը հավասար են։
Քանի որ CH-ն և CK-ը զուգահեռագծեր են, ու CB-ն հավասար է և՛ DH-ին և՛ EK-ին: DH-ն հավասար է EK-ին: Այսպիսով, DE հավասար է HK-ին: DCE եռանկյունը նույնպես հավասար է HBK եռանկյանը, և DG զուգահեռագիծը հավասար է HN զուգահեռագծին: Հանգունորեն AFG եռանկյունը, հավասար է MLN եռանկյանը: Եվ CF զուգահեռագիծը հավասար է BM զուգահեռագծին, իսկ իր հերթին CG-ն՝ BN-ին: Որպես հակադիր նիստեր: Այսպիսով, AFG և DCE երկու եռանկյունների և երեք AD, DG և CG զուգահեռագծերով անցնող պրիզման հավասար է MLN և HBK երկու եռանկյունների և երեք BM, HN և BN զուգահեռագծերով՝ պրիզմային:Հակադիր նիստերը նույնպես հավասար են։ Հետևաբար ամբողջ զուգահեռանիստ CM-ն հավասար է ամբողջ զուգահեռանիստին՝ CN-ին:
== ՆՇՈՒՄՆԵՐ ==
<references />