Changes
Թող շրջանի կենտրոնը, E կետը, գտնվի [Առաջարկ 3.1], և թող EB, EC և ED կետերը միավորված լինեն, և թող BE-ը գծվի A կետին: Քանի որ BC-ն հավասարանկյուն տասանկյան կողմ է, ապա շրջանագիծ ACB-ն 5 անգամ մեծ է BC-ի երկարությունից: Այսպիսով, շրջանագիծ AC-ն 4 անգամ մեծ է CB-ից: Եվ քանի որ AC շրջանագիծը հավասար է CB-ին, այնպես էլ անկյուն AEC-ն հավասար է CEB-ին [Առաջարկ 6.33]: Այդպես, անկյուն AEC-ն 4 անգամ մեծ է CEB-ից: Եվ քանի որ անկյուն EBC-ն հավասար է ECB-ին [Առաջարկ 1.5], ապա անկյուն AEC-ն 2 անգամ մեծ է ECB-ից [Առաջարկ 1.32]: Եվ քանի որ ուղղաձիգ EC-ն հավասար է CD-ին, ապա անկյուն CED-ն հավասար է անկյուն CDE-ին [Առաջարկ 1.5]: Այդպես, անկյուն ECB-ն 2 անգամ մեծ է EDC-ից [Առաջարկ 1.32]: Սակայն AEC-ն արդեն ապացուցվել է, որ 4 անգամ մեծ է EDC-ից: Եվ AEC-ն նույնպես 4 անգամ մեծ է BEC-ից: Այսպիսով, EDC-ն հավասար է BEC-ին: Եվ անկյուն EBD-ն համատեղ է երկու եռանկյունում՝ BEC և BED: Այդպիսով, մնացած անկյուն BED-ն հավասար է անկյուն ECB-ին [Առաջարկ 1.32]: Այսպիսով, եռանկյունը EBD հավասար է եռանկյունին EBC: Այլ կերպ ասած, համեմատաբար, ինչպես BD-ն է BE-ին, այնպես էլ AB-ն է BH-ին [Առաջարկ 6.4]: Եվ BE-ն հավասար է CD-ին: Ուստի, ինչպես BD-ն է DC-ին, այնպես էլ DC-ն է CB-ին: Եվ BD-ն մեծ է DC-ից: Այսպիսով, DC-ն նույնպես մեծ է CB-ից [Առաջարկ 5.14]. Այսպիսով, BD ուղղաձիգ գիծը կտրված է արտաքին և միջին հարաբերությամբ (C կետում), և DC-ն նրա մեծ հատվածն է: (Այս է այն, ինչ անհրաժեշտ էր ապացուցել):
== Պնդում 10 ==
Եթե միևնույն շրջանում համահարթ հնգանկյուն է դրված, ապա հնգանկյան կողմի քառակուսի գիծը հավասար է նույն շրջանում դրված վեցանկյանի և տասանկյանի կողմերի քառակուսիերի գումարին։
Թող ABCDE լինի շրջան։ Եվ թող ABCDE հավասարակողմ հնգանկյունը լինի դրված ABCDE շրջանում։ Պնդում եմ, որ հնգանկյան ABCDE կողմի քառակուսին հավասար է նույն շրջանում դրված վեցանկյանի և տասանկյանի կողմերի քառակուսիերի գումարին։
Թող կենտրոնի կետը լինի F, որը գտնվել է [Պրոպ. 3.1]։ Եվ թող AF ուղղի միացված լինի, և թող այն անցնի G կետով։ Եվ թող F B միացված լինի։ Եվ թող FH ուղղը լինի F-ից ուղղահայաց AB-ին։ Եվ թող այն անցնի K կետով։ Եվ թող AK և K B միացված լինեն։ Եվ կրկին, թող F L ուղղը լինի F-ից ուղղահայաց AK-ին։ Եվ թող այն անցնի M կետով։ Եվ թող K N միացված լինի։
Քանի որ ABCG շրջանը հավասար է AEDG շրջանում, որի ABC-ն հավասար է AED-ին, մնացած շրջանը CG-ը այդպես էլ հավասար է մնացած GD շրջանին։ Եվ CD-ը (հնգանկյան կողմն է)։ CG-ը այդպես էլ (տասանկյանի կողմն է)։ Եվ քանի որ F A հավասար է F B-ին, և F H ուղղահայաց է (AB-ին), ապա անկյուն AFK-ը նույնպես հավասար է KFB-ին [Պրոպ. 1.5, 1.26]։ Հետևաբար, AK շրջանը հավասար է KB-ի [Պրոպ. 3.26]։ Այսպիսով, AB շրջանը կրկնակի է BK շրջանից։ Այսպիսով, ուղիղ գիծը AK տասանկյան կողմն է։ Այսպես, նույն պատճառներով, AK շրջանը կրկնակի է KM-ից։ Եվ քանի որ AB շրջանը կրկնակի է BK շրջանից, և CD շրջանը հավասար է AB շրջանին, ապա CD շրջանը նույնպես կրկնակի է BK շրջանից։ Եվ CD շրջանը նույնպես կրկնակի է CG-ից։ Այսպիսով, CG շրջանը հավասար է BK շրջանին։ Բայց, BK-ը կրկնակի է KM-ից, քանի որ KA-ը նույնպես (կրկնակի է KM-ից)։ Այսպես, CG շրջանը նույնպես կրկնակի է KM-ից։ Բայց, իսկապես, CB շրջանը նույնպես կրկնակի է BK-ից։ Քանի որ CB շրջանը հավասար է BA-ին։ Այսպիսով, ամբողջ GB շրջանը նույնպես կրկնակի է BM-ից։ Հետևաբար, անկյուն GFB [է] նույնպես կրկնակի անկյուն BF M [Պրոպ. 6.33]։