Changes
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math>(2a+b)\cdot b + a^2 = (a+b)^2 </math>։
== Պնդում 7† 7<ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math> (a+b)^2 + a^2 = 2\cdot (a+b) \cdot a + b^2 </math>։/ref> ==
Հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։
Այսպիսով՝ հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։
Հատվածը կամայական կետում հատելիս՝ այդ հատվածով և հատման արդյունքում առաջացած կտորներից մեկով սահմանված ուղղանկյան մակերեսի քառապատիկի և հատման արդյունքում առաջացած մյուս հատվածով կառուցված քառակուսու մակերեսի գումարը հավասար է վերոնշյալ և ողջ հատվածների գումարով սահմանված քառակուսու մակերեսին։
CG=CQ, QR=RP, այս հավասարություննեից էլ հետևում է որ AG և MQ, QL և RF, MQ և QL անկյունագծերով ուղղանկյունները հավասար են և ML անկյունագծով զուգահեռագծի մաս են կազմում։ AG և RF ուղղանկյունները ևս հավասար են։ Հետևաբար, AG, MQ, QL և RF ուղղանկյունները միմյանց հավասար են, և այդ չորսը իրար հետ վերցված AG ուղղանկյան քառապատիկն են։ Ցույց էր տրված նաև, որ CK, KD, GR և RN քառակուսիները միասին CK-ի քառապատիկն են։ Հետևում է, որ STU գնոմոնը կազմեղ վերոնշյալ 8 պատկերները AK ուղղանկյան քառապատիկն են։ BK=BD հավասարությունից ելնելով AK ուղղանկյունը ստացվել է AB և BD կողմերից։ Այդ ուղղանկյան քառապատիկը AK-ի քառապատիկն է։ Սակայն STU գնոմոնը նույնպես AK-ի քառապատիկն էր։ Հետևաբար, AB և BD կողմերով ուղղանկյունը հավասար է STU գնոմոնին։ Դիցուք, վերոնշյալ երկուսին էլ գումարենք OH-ը, որը հավասար է AC կողմով քառակուս։ Կստացվի, որ AB և BD կողմերով ուղղանկյանը AC-ի հետ միասին հավասար է STU գնոմոնին և OH քառակուսուն։ Սակայն STU գնոմոնն ու OH քառակուսին համարժեք են ոնջ AEFD քառակուսուն, որը կառուցված է AD կողմով։ Հետևում է, որ AB և BD կողերով հազմված ուղղանկյան քառապատիկը AC քառակուսու հետ միասին հավասար է AD քառակուսուն։ BD-ն էլ հավասար է BC-ին։ Հետևում է, որ AB և BC կողմերով ուղղանկյան քառապատիկը AC քառակուսու հետ միասին հավասար է AD քառակուսուն, որը սահմանված է AB և BC հատվածների գումարը որպես կողմ վերցնելով։
Հետէաբար, հատվածը կամայական կետում հատելիս՝ այդ հատվածով և հատման արդյունքում առաջացած կտորներից մեկով սահմանված ուղղանկյան մակերեսի քառապատիկի և հատման արդյունքում առաջացած մյուս հատվածով կառուցված քառակուսու մակերեսի գումարը հավասար է վերոնշյալ և ողջ հատվածների գումարով սահմանված քառակուսու մակերեսին։ Ահա այն ինչ պահանջվում էր ապացուցել։
== Պնդում 9<ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math> a^2 + b^2 =2 \cdot [(\frac{a+b}{2})^2+ (\frac{a+b}{2} - b)^2] </math>։</ref> ==
Ստաղվում է, որ հատվածը հավասար և անհավասար մասերի բաժանելիս՝ անհավասար մասերի վրա կառուցված քառակուսիների գումարը հավասար է հատվածի կեսի և հավասար ու անհավասար մասերի տարբերության վրա կառուված քառակուսիների գումարի կրկնապատիկին։
== Պնդում 10† 10<ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math> (2\cdot a + b)^2 + b^2 = 2 \cdot [a^2 + (a+b)^2] </math>:</ref> ==
Եթե հատվածը հավասար կիսենք և որպես հատվածի շարունակություն նրան կցենք նոր հատված, ապա ստացված ողջ և ավելացված հատվածի վրա կառուցված քառակուսիների գումարը հավասար կլինի նախնական հատվածի կեսի և այդ կեսի ու կցված հատվածի վրա կառուցված քառակուսիների գումարին։
Ստացվում է, եթե հատվածը հավասար կիսենք և որպես հատվածի շարունակություն նրան կցենք նոր հատված, ապա ստացված ողջ և ավելացված հատվածի վրա կառուցված քառակուսիների գումարը հավասար կլինի նախնական հատվածի կեսի և այդ կեսի ու կցված հատվածի վրա կառուցված քառակուսիների գումարին։ ։ Սա հենց այն էր, ինչ պետք էր ցույց տալ։
Հատվածը հատել այնպես, որ ողջ հատվածով և հատման արդյունքում առաջացած հատվածներիից մեկով կառուցված ուղղանկյունը հավասար լինի հատման արդյունքում առաջացած հատվածներիից մյուսի վրա սահմանված քառակուսուն։
Հետևաբար, բութանկյուն եռանկյուններում բութ անկյանը հանդիպակաց կողմի վրա կառուցված քառակուսին բութ անկյանը կից կողմերով կառուցված քառակուսիների գումարից մեծ է բութ անկյանը կից կողմով, որի վրա ընած է ուղղահայացը և դրսի կողմից բութ անկյանը միացող հատվածով, որը հատած է ուղղահայացով, կառուցված ուղղանկյան կրկնապատիկի չափով։ Սա հենց այն էր, ինչ պետք էր ցույց տալ։
== Պնդում 13† 13<ref>Այս պնդումը համարժեք է բոլորիս հայտնի կոսինուսնորի բանաձևին՝ <math> AC^2 = AB^2 + BC^2 - 2\cdot AB\cdot BC\cdot cos(ABC) </math>, քանի որ <math> cos(ABC) = \frac{BD}{AB} </math>:</ref> ==
Սուրանկյուն եռանկյուններում սուր անկյանը հանդիպակաց կողմի վրա կառուցված քառակուսին սուր անկյանը կից կողմերի վրա կառուցված քառակուսիների գումարից փոքր է սուր անկյանը այն կից կողմով, որի վրա ընկնում է ուղղահայացը և ներսի կողմից եռանկյան սուր անկյանը միացող այն հատվածով, որը հատած է ուղղահայացով, կառուցված ուղղանկյան կրկնապատիկի չափով։
Քանի որ CB հատվածը հատած է կամայական D կետում, CB և BD կողերով քառակուսինեի գումարը հավսաքար է CB և BD կողերով ուղղանկյան կրկնապատիկին և DC հիմքով քառակուսուն [Պնդում 2․7]։ Երկու կողմին էլ ավելացնենք DA հիմքով քառակուսին։ Արդյունքում՝ CB, BD և DA հիմքերով քառակուսիների գումարը հավասար է CB և BD կողերով ուղղանկյան կրկնապատիկին և AD ու DC հիմքերով քառակուսիների գւմարին։ Սակայն AB հիմքով քառակուսին էլ հավասար է BD և DA հիմքերով քառակուսիների գումարին։ Անկյուն D-ն ուղիղ անկյուն է [Պնդում 1․47]։ AC-ի վրա կառուցված քառակուսին էլ հավասար է AD և DC հիմքերով քառակուսիների գումարին [Պնդում 1․47]։ Այդ պատճառով էլ CB և BA հիմքերով քառակուսիների գումարը հավասար է AC հիմքով քառակուսուն և CB ու BD կողմերով կառուցված ուղղանկյան կրկնապատիկին։ Հետևաբար, AC հիմքով քառակուսին առանձին վերցված CB և BA հիմքերով քառակուսիներից ավելի փոքր է CB-ով և BD-ով կառուցված ուղղանկյան կրկնապատիկի չափով։
Այսպիսով՝ ոուրանկյուն եռանկյուններում սուր անկյանը հանդիպակաց կողմի վրա կառուցված քառակուսին սուր անկյանը կից կողմերի վրա կառուցված քառակուսիների գումարից փոքր է սուր անկյանը այն կից կողմով, որի վրա ընկնում է ուղղահայացը և ներսի կողմից եռանկյան սուր անկյանը միացող այն հատվածով, որը հատած է ուղղահայացով, կառուցված ուղղանկյան կրկնապատիկի չափով։
== Պնդում 14 ==