Changes
/* Պնդում 5 Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ ab + [(a + b)/2 − b]^2 = [(a + b)/2]^2. */
Այսպիսով, եթե ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով կազմված քառակուսին հավասար է նրա մասերի քառակուսիների գումարին և այդ մասերի արտադրյալի կրկնապատիկին։ Սա այն էր, ինչ պետք էր ապացուցել։
== Պնդում 5 <ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math>ab + [((a + b)/2 − b])^2 = [((a + b)/2])^2.</math></ref>==
Եթե ուղիղը բաժանված է հավասար և անհավասար մասերի, ապա ամբողջ ուղղի անհավասար մասերից կազմված ուղղանկյան և հավասար և անհավասար մասերի տարբերության քառակուսու գումարը հավասար է գծի կեսի քառակուսուն։