Changes

Տարերք/Գիրք 1

Ավելացվել է 89 բայտ, 20 Դեկտեմբեր
/* Պնդում 29 */
EF ուղիղը հատում է զուգահեռ AB և CD ուղիղները։ Պնդումն այն է, որ այն դարձնում է AGH և GHD անկյունները հավասար, EGB արտաքին անկյունը՝ հավասար ներքին և հակադիր GHD անկյանը, և նույն կողմի վրա գտնվող BGH և GHD ներքին անկյունների գումարը՝ հավասար երկու ուղիղ անկյունների։
Եթե AGH անկյունը հավասար չէ GHD անկյանը, ապա նրանցից մեկը մեծ է։ Ենթադրենք AGH անկյունը մեծ է։ Երկու անկյուններին ավելացնենք BGH անկյունը։ Հետևաբար, AGH և BGH անկյունների գումարը մեծ է BGH և GHD անկյունների գումարից։ Բայց, AGH և BGH անկյունների գումարը հավասար է երկու ուղիղ անկյունների [[[#Պնդում 13|Պնդում 1.13]] ]։ Հետևաբար, BGH և GHD անկյունների գումարը փոքր է երկու ուղիղ անկյուններից։ Բայց, ուղիղները գծված են անվերջ ներքին անկյուններից, որոնց գումարը փոքր է հատվող երկու ուղիղ անկյուններից [Կանխադրույթ [[#Աքսիոմաներ|Աքսիոմա 5]] ]: Հետևաբար, անվերջ գծված AB և CD ուղիղները կհատվեն։ Բայց, նրանք չեն հատվում, եթե հաշվի առնենք, որ իսկզբանե դրանք զուգահեռ էին [ [[#Սահմանումներ|Սահմանում 1.23]] ]։ Հետևաբար, AGH և GHD անկյունները չեն կարող հավասար չլինել՝ հավասար են։ Բայց, AGH և EGB անկյունները նույնպես հավասար են [[[#Պնդում 15|Պնդում 1.15]] ]։ EGB անկյունը, հետևաբար, հավասար է GHD անկյանը։ Երկուսին էլ ավելացնենք BGH անկյունը։ Հետևաբար, EGB և BGH անկյունների գումարը հավասար է BGH և GHD անկյունների գումարին։ Բայց, EGB և BGH անկյունների գումարը հավասար է երկու ուղիղ անկյունների [[[#Պնդում 13|Պնդում 1.13]] ]։ Հետևաբար, BGH և GHD անկյունների գումարը նույնպես հավասար է երկու ուղիղ անկյունների։
Հետևաբար, զուգահեռ ուղիղները հատող ուղղիղը ստեղծում է հավասար հակադիր անկյուններ, արտաքին անկյուն՝ հավասար ներքին և հակադիր անկյանը, և նույն կողմի վրա գտնվող ներքին անկյունների գումարը հավասարվում է երկու ուղիղ անկյունների։ Սա այն էր, ինչ պետք էր ապացուցել։