Changes
/* Պնդում 36 */
[[Պատկեր:ElementsBook1-Propostion36.png|center|200px]]
Գծված են BE և CH ուղիղները։ Քանի որ BC-n հավասար է FG-ին և FG-ն էլ հավասար է EH-ին [[[#Պնդում 34|Պնդում 1.34]] ], հետևաբար, BC-ն հավասար է EH-ին։ Նրանք նաև զուգահեռ են և EB ու HC ուղիղները միացնում են դրանք։ Բայց ուղիղները, որոնք միացնում են հավասար և զուգահեռ ուղիղներ նույն կողմի վրա, իրենք էլ հավասար են և զուգահեռ [[[#Պնդում 33|Պնդում 1.33]] ] (հետևաբար EB-ն և HC-ն նույնպես հավասար են և զուգահեռ)։ Հետևաբար, EBCH-ը զուգահեռագիծ է [[[#Պնդում 34|Պնդում 1.34]] ] և հավասար է ABCD-ին: Այն ունի նույն BC հիմքը, այնպես ինչպես ABCD-ն և գտնվում է նույն BC և AH զուգահեռների միջև, այնպես ինչպես ABCD-ն [[[#Պնդում 35|Պնդում 1.35]] ]։ Նույն պատճառով EFGH-ն հավասար է նույն EBCH զուգահեռագծին [[[#Պնդում 34|Պնդում 1.34]] ]։ Այսպիսով, ABCD զուգահեռագիծը հավասար է EFGH զուգահեռագծին։
Հետևաբար, հավասար հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար են միմյանց։ Սա այն էր, ինչ պետք էր ապացուցել։