Changes

Տարերք/Գիրք 1

Ավելացվել է 46 բայտ, 11:45, 20 Դեկտեմբերի 2024
/* Պնդում 41 */
ABCD զուգահեռագիծը և EBC եռանկյունը ունեն նույն BC հիմքը և գտնվում են նույն BC և AE զուգահեռների միջև։ Պնդումն այն է, որ ABCD-ի մակերեսը BEC-ի մակերեսի կրկնապատիկն է։
Միացված է AC հատվածը։ Այսպիսով, ABC եռանկյունը հավասար է EBC եռանկյանը։ Այն նույն BC հիմքի վրա է (EBC) և գտնվում է նույն BC և AE զուգահեռների միջև [[[#Պնդում 37|Պնդում 1.37]] ]։ Բայց, ABCD զուգահեռագծի մակերեսը ABC եռանկյան մակերեսի կրկնապատիկն է։ AC անկյունագիծը կիսում է վերջինս երկու մասի [[[#Պնդում 34|Պնդում 1.34]] ]։ Այսպիսով, ABCD զուգահեռագծի մակերեսը EBC եռանկյան մակերեսի կրկնապատիկն է։
Հետևաբար, եթե զուգահեռագիծը և եռանկյունը ունեն նույն հիմքը և նույն զուգահեռների միջև են, ապա զուգահեռագծի մակերեսը եռանկյան մակերեսի կրկնապատիկն է։ Սա այն էր, ինչ պետք էր ապացուցել։