Changes

Տարերք/Գիրք 1

Ավելացվել է 136 բայտ, 20 Դեկտեմբեր
/* Պնդում 47 */
ABC-ն ուղղանկյուն եռանկյուն է՝ BAC ուղիղ անկյունով։ Պնդումն այն է, որ BC-ի քառակուսին հավասար է BA-ի և AC-ի քառակուսիների գումարին գումարին։
BC-ի վրակառուցված է BDEC քառակուսին և GB ու HC քառակուսիները՝ AB-ի ու AC-ի վրա համապատասխանաբար [[[#Պնդում 46|Պնդում 1.46]] ]։ A կետից գծված է AL-ը, որը զուգահեռ է BD-ին կամ CE-ին [[[#Պնդում 31|Պնդում 1.31]] ]։ AD-ն և FC-ն միացված են։ Քանի որ BAC և BAG անկյուններից յուրաքանչյուրը ուղիղ անկյուն է, ապա նույն կողմի վրա չնկնող AC և AG երկու ուղիղները ստեղծում են կից անկյուններ BA ուղղով՝ A կետում, որի գումարը հավասար է երկու ուղիղ անկյունների։ Հետևաբար CA-ն ընկնում է AB-ի վրա [[[#Պնդում 14|Պնդում 1.14]] ]։ Նույն պատճառով BA-ն ընկնում է AH-ի վրա։ Քանի որ DBC անկյունը հավասար է FBA անկյանը, կամ երկուսն էլ ուղիղ անկյուն են, երկուսին էլ ավելացնենք ABC-ն։ Հետևաբար, ամբողջ DBA անկյունը հավասար է FBC ամբողջ անկյանը։ Քանի որ DB-ն հավասար է BC-ին և FB-ն BA-ին, երկու ուղիղները՝ DB-ն և BA-ն,համապատասխանաբար հավասար են CB և BF ուղիղներին։ Իսկ DBA անկյունը հավասար է FBC անկյանը։։ Հետևաբար, AD հիմքը հավասար է FC հիմքին և ABD անկյունը հավասար է FBC անկյանը [[[#Պնդում 4|Պնդում 1.4]] ]: Իսկ BL զուգահեռագծի մակերեսը ABD եռանկյան մակերեսի կրկնապատիկն է։ Դրանք ունեն նույն BD հիմքը և ընկած են նույն BD և AL զուգահեռների միջև [[[#Պնդում 41|Պնդում 1.41]] ]: GB քառակուսու մակերեսը FBC եռանկյան մակերեսի կրկնապատիկն է։ Կրկին, դրանք ունեն նույն FB հիմքը և ընկած են նույն FB և GC զուգահեռների միջև [[[#Պնդում 41|Պնդում 1.41]] ] (հավասար պատկերների կեսերը հավասար են միմյանց)<ref>Սա լրացուցիչ ընդհանուր հասկացություն է:</ref>: Հետևաբար, BL զուգահեռագիծը հավասար է GB քառակուսուն։ Նույն կերպ, AE-ն և BK-ը միացված են և կարող ենք ցույց տալ, որ CL զուգահեռագիծը հավասար է HC քառակուսուն։ Հետևաբար, ամբողջ BDEC քառակուսին հավասար է GB և HC քառակուսիների գումարին։ BDEC քառակուսին կառուցված է BC- վրա․ իսկ GB և HC քառակուսիները՝ BA-ի և AC-ի վրա համապատասխանաբար։ Հետևաբար, BC կողմի քառակուսին հավասար է BA և AC կողմերի քառակուսիների գումարին։
[[Պատկեր:ElementsBook1-Propostion47.png|center|200px]]