Changes
/* Պնդում 3 Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (a + b) a = ab + a^2 */
B ուղիղը կամայականորեն բաժանված C կետում: Պնդումն այն է, որ AB և BC ուղիղներով կազմված ուղղանկյունը հավասար է AC և CB ուղիղներով կազմված ուղղանկյան և BC ուղղով կազմված քառակուսու գումարին:
CB ուղղով կառուցված է CDEB քառակուսին [[[Տարերք/Գիրք 1#Պնդում 46|Պնդում 1.46]] ], F կետով գծված է ED ուղիղը , իսկ A կետով գծված է AF ուղիղը՝ զուգահեռ CD կամ BE ուղիղներից մեկին [[[Տարերք/Գիրք 1#Պնդում 31|Պնդում 1.31]] ]: Այսպիսով, AE ուղղանկյունը հավասար է AD ուղղանկյան և CE քառակուսու գումարին և այն կազմված է AB և BC ուղիղներով։ Ի վերջո, այն կազմված է AB և BE ուղիղներով, իսկ BE-ն հավասար է BC-ի: AD-ն ուղղանկյուն է, որը կազմված է AC և CB ուղիղներով:, իսկ DC-ն հավասար է CB-ին: DB-ն քառակուսի է` կազմված CB կողմեվ: Այսպիսով, AB և BC ուղիղներով կազմված ուղղանկյունը հավասար է AC և CB կողմերով կազմված ուղղանկյան և BC կողմով կազմված քառակուսու գումարին:
Հետևաբար, ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով և նրա մասերից մեկով կազմված ուղղանկյունը հավասար է այդ մասով կազմված քառակուսու և ուղղի երկու մասերով կազմված ուղղանկյան գումարին։ Սա այն էր, ինչ պետք էր ապացուցել։