Changes

Տարերք/Գիրք 1

Ավելացվել է 3722 բայտ, 13 Դեկտեմբեր
/* Պնդում 47 */
== Պնդում 47 ==
 
Ուղղանկյուն եռանկյան ուղիղ անկյանի դիմացի կողմի քառակուսին հավասար է մյուս կողմերի քառակուսիների գումարին։
 
ABC-ն ուղղանկյուն եռանկյուն է՝ BAC ուղիղ անկյունով։ Պնդումն այն է, որ BC-ի քառակուսին հավասար է BA-ի և AC-ի քառակուսիների գումարին գումարին։
 
BC-ի վրակառուցված է BDEC քառակուսին և GB ու HC քառակուսիները՝ AB-ի ու AC-ի վրա համապատասխանաբար [Պնդում 1.46]։ A կետից գծված է AL-ը, որը զուգահեռ է BD-ին կամ CE-ին [Պնդում 1.31]։ AD-ն և FC-ն միացված են։ Քանի որ BAC և BAG անկյուններից յուրաքանչյուրը ուղիղ անկյուն է, ապա նույն կողմի վրա չնկնող AC և AG երկու ուղիղները ստեղծում են կից անկյուններ BA ուղղով՝ A կետում, որի գումարը հավասար է երկու ուղիղ անկյունների։ Հետևաբար CA-ն ընկնում է AB-ի վրա [Պնդում 1.14]։ Նույն պատճառով BA-ն ընկնում է AH-ի վրա։ Քանի որ DBC անկյունը հավասար է FBA անկյանը, կամ երկուսն էլ ուղիղ անկյուն են, երկուսին էլ ավելացնենք ABC-ն։ Հետևաբար, ամբողջ DBA անկյունը հավասար է FBC ամբողջ անկյանը։ Քանի որ DB-ն հավասար է BC-ին և FB-ն BA-ին, երկու ուղիղները՝ DB-ն և BA-ն,համապատասխանաբար հավասար են CB և BF ուղիղներին։ Իսկ DBA անկյունը հավասար է FBC անկյանը։։ Հետևաբար, AD հիմքը հավասար է FC հիմքին և ABD անկյունը հավասար է FBC անկյանը [Պնդում 1.4]: Իսկ BL զուգահեռագծի մակերեսը ABD եռանկյան մակերեսի կրկնապատիկն է։ Դրանք ունեն նույն BD հիմքը և ընկած են նույն BD և AL զուգահեռների միջև [Պնդում 1.41]: GB քառակուսու մակերեսը FBC եռանկյան մակերեսի կրկնապատիկն է։ Կրկին, դրանք ունեն նույն FB հիմքը և ընկած են նույն FB և GC զուգահեռների միջև [Պնդում 1.41] (հավասար պատկերների կեսերը հավասար են միմյանց)<ref>Սա լրացուցիչ ընդհանուր հասկացություն է:</ref>: Հետևաբար, BL զուգահեռագիծը հավասար է GB քառակուսուն։ Նույն կերպ, AE-ն և BK-ը միացված են և կարող ենք ցույց տալ, որ CL զուգահեռագիծը հավասար է HC քառակուսուն։ Հետևաբար, ամբողջ BDEC քառակուսին հավասար է GB և HC քառակուսիների գումարին։ BDEC քառակուսին կառուցված է BC- վրա․ իսկ GB և HC քառակուսիները՝ BA-ի և AC-ի վրա համապատասխանաբար։ Հետևաբար, BC կողմի քառակուսին հավասար է BA և AC կողմերի քառակուսիների գումարին։
 
[[Պատկեր:ElementsBook1-Propostion47.png|center|200px]]
 
Հետևաբար, ուղղանկյուն եռանկյան ուղիղ անկյանի դիմացի կողմի քառակուսին հավասար է մյուս կողմերի քառակուսիների գումարին։ Սա այն էր, ինչ պետք էր ցույց տալ։
 
== Պնդում 48 ==
== Նշումներ ==
<references/>