[[Կատեգորիա:Հայպետուսմանկհրատ]]
[[Կատեգորիա:Ոչ գեղարվեստական]]
== ==
[[Պատկեր:Interesting_Algebra_Ch1.png|800px|frameless|thumb|center]]
==ԳԼՈՒԽ ԱՌԱՋԻՆ։ ՄԱԹԵՄԱՏԻԿԱԿԱՆ ՀԻՆԳԵՐՈՐԴ ԳՈՐԾՈՂՈՒԹՅՈՒՆ==
Կարելի՞ է արդյոք հուսալ, որ պահարանը կբացվի մոտակա <math>10</math> աշխատանքային օրվա ընթացքում։
'''''Լուծում'''''
Հաշվենք, թե ընդամենը քանի՞ կոմբինացիա էր հարկավոր փորձել։
Էլեկտրական գործիքը, որը կոչվում է տրիգեր, պարունակում է երկու, էլեկտրոնային լամպեր (այսինքն՝ մոտավորապես այնպիսի լամպեր, ինչպիսիք կիրառվում են ռադիոընդունիչների մեջ)։ հոսանքը տրիգերում կարող է գնալ միայն մեկ լամպի միջով՝ կա՛մ «ձախի», կա՛մ «աջի»։ Տրիգերն ունի երկու կոնտակտ, որոնց կարելի է դրսից կարճատև էլեկտրական ազդանշան (իմպուլս) հաղորդել և երկու կոնտակտ, որոնցով տրիգերից ստացվում է պատասխան իմպուլսը։
[[Պատկեր:Interesting_Algebra_Pic_1.png|300px|frameless|thumb|center]]
Դրսից էլեկտրական իմ պուլսի մուտքի պահին տրիգերը հոսանքափոխվում է. այն լամպը, որի միջով հոսանքն անցել է, անջատվում է, և հոսանքն սկսում է գնալ արդեն մյուս լամպի միջով։ Պատասխան իմպուլսը տրիգերը տալիս է այն պահին, երբ անջատվում է աջ լամպը և միացվում ձախը։
Այժմ պատկերացնենք, որ կան մի քանի տրիգերներ և որ արտաքին իմպուլսները հաղորդվում են առաջին տրիգերին, առաջին տրիգերի պատասխան իմպուլսները հաղորդվում են երկրորդին) երկրորդի պատասխան իմպուլսները՝ երրորդին և այլն (նկ. 2-րդում տրիգերները դասավորված են մեկը մյուսից հետո՝ ձախից աջ)։ Հետևենք, թե ինչպես կաշխատի տրիգերների այդպիսի շղթան։
[[Պատկեր:Interesting_Algebra_Pic_2.png|400px|frameless|thumb|center]]
Դիցուք, սկզբից բոլոր տրիգերները գտնվում էին <math>0</math> դիրքում։ Օրինակ, հինգ տրիգերներից կազմված շղթայի համար մենք ունեինք <math>00000</math> կոմբինացիան։ Առաջին իմպուլսից հետո առաջին տրիգերը (ամենաաջը) կընդունի <math>1</math> դիրքը, իսկ քանի որ այդ դեպքում պատասխան իմպուլս չի լինի, ապա մնացած բոլոր տրիգերները կմնան <math>0</math> դիրքերում, այսինքն՝ շղթան կբնութագրվի <math>00001</math> կոմբինացիայով։ Երկրորդ իմպուլսից հետո առաջին տրիգերը կանջատվի (կընդունի <math>0</math> դիրքը), բայց այդ դեպքում ստացվում է պատասխան իմպուլս, որի շնորհիվ էլ միացվում է երկրորդ տրիգերը։ Մնացած տրիգերները կմնան <math>0</math> դիրքերում, այսինքն՝ կստացվի <math>00010</math> կոմբինացիան։ Երրորդ իմպուլսից հետո միացվում է առաջին տրիգերը, իսկ մնացածները չեն փոխում իրենց դիրքերը։ Մենք կունենանք <math>00011</math> կոմբինացիան։ Չորրորդ իմպուլսից հետո անջատվում է առաջին տրիգերը՝ տալով պատասխան ազդանշան. այդ պատասխան իմպուլսից կանջատվի երկրորդ տրիգերը և նույնպես կտա պատասխան իմպուլս. վերջապես, այդ վերջին իմպուլսից միացվում է երրորդ տրիգերը։ Արդյունքում մենք կստանանք <math>00100</math> կոմբինացիան։
Դիցուք, տրիգերների երեք շղթաները միացած են այնպես, ինչպես ցույց է տրված 3-րդ նկարում։ Տրիգերների վերին շղթան ծառայում է առաջին գումարելին գրելու համար, երկրորդ շղթան՝ երկրորդ գումարելին գրելու համար, իսկ ներքևի շղթան՝ գումարը ստանալու համար։ Գործիքի միացման մոմենտին ներքևի շղթայի տրիգերին անցնում են իմպուլսներ վերին և միջին շղթաների այն տրիգերներից, որոնք գտնվում են <math>1</math> դիրքում։
[[Պատկեր:Interesting_Algebra_Pic_3.png|400px|frameless|thumb|center]]
Դիսուք, օրինակ, ինչպես այդ ցույց է տրված 3-րդ նկարում,առաջին երկու շղթաներում գրված են <math>101</math> և <math>111</math> գումարելիները (թվարկության երկուական սիստեմով)։ Այդ ժամանակ ներքևի շղթայի առաջին (ամենաաջ) տրիգերի վրա գործիքի միացման պահին առաջանում են երկու իմպուլսներ՝ առաջին տրիգերների յուրաքանչյուր գումարելիներից։ Մենք արդեն գիտենք, որ երկու իմպուլսների ստացման հետևանքով առաջին տրիգերը կմնա <math>0</math> դիրքում, բայց կտա պատասխան իմպուլս երկրորդ տրիգերին։ Բացի այդ, երկրորդ տրիգերին ազդանշան է գալիս երկրորդ գումարելիից։ Այսպիսով, երկրորդ տրիգերի վրա առաջանում են երկու իմպուլս, որի հետևանքով էլ երկրորդ տրիգերը կգտնվի <math>0</math> դիրքում և կուղարկի պատասխան իմպուլս երրորդ տրիգերին։ Բացի այդ, երրորդ տրիգերին են գալիս դարձյալ երկու իմպուլսներ (գումարելիներից յուրաքանչյուրից)։ Ստացված երեք ազդանշանների հետևանքով երրորդ տրիգերը կանցնի <math>1</math> դիրքին և կտա պատասխան իմպուլս։ Այդ պատասխան իմպուլսը չորրորդ տրիգերը կփոխադրի <math>1</math> դիրքը (այլ ազդանշաններ չորրորդ տրիգերի վրա չեն ստացվում)։ Այսպիսով, 3-րդ նկարում պատկերված գործիքը կատարեց (թվարկության երկուական սիստեմով) երկու թվերի գումարում «սյունակով»։
Օրինակը շատ ուսանելի է։ Այն ցույց է տալիս, որ մաթեմատիկայի մեջ վտանգավոր է վարվել համանմանությամբ. դա հեշտությամբ կարող է սխալ եզրակացությունների հասցնել։
===ԵՐԵՔ ԵՐԵՔՆԵՐՈՎ===