Ենթադրենք ABC երանկյան կողմերից մեկի՝ BC-ի քառակուսին հավասար է BA և AC կողմերի քառակուսիների գումարին։ Պնդումն այն է, որ BAC-ն ուղիղ անկյուն է։
A կետով գծված է AD ուղիղը, որը ուղղահայաց է AC կողմին [[[#Պնդում 11|Պնդում 1.11]] ], AD-ն հավասար է BA-ին [[[#Պնդում 3|Պնդում 1.3]] ] և DC-ն միացված է։ Քանի որ DA-ն հավասար է AB-ին, ապա DA քառակուսին նույնպես հավասար է AB քառակուսուն <ref>Այստեղ օգտագործվում է լրացուցիչ ընդհանուր հասկացություն, որ հավասար իրերի քառակուսիներն իրենք էլ հավասար են: Հետագայում օգտագործվում է հակադարձ հասկացությունը։</ref>։ AC քառակուսին ավելացված է երկուսին էլ։ Հետևաբար, DA և AC քառակուսիների գումարը հավասար է BA և AC քառակուսիների գումարին։ Բայց DC քառակուսին հավասար է DA և AC քառակուսիների գումարին։ Իսկ DAC-ն ուղիղ անկյուն է [[[#Պնդում 47|Պնդում 1.47]] ]։ Բայց, BC քառակուսին հավասար է BA և AC քառակուսիների գումարին։ Դա ենթադրվում է։ Հետևաբար, DC քառակուսին հավասար է BC քառակուսուն։ Այսպիսով, DC-ն նույնպես հավասար է BC-ին։ Քանի որ DA-ն հավասար է AB-ին և AC-ն ընդհանուր է, DA և AC երկու ուղիղները հավասար են BA և AC երկու ուղիղներին։ Իսկ DC հիմքը հավասար է BC հիմքին։ Հետևաբար, DAC անկյունը հավասար է BAC անկյանը [[[#Պնդում 8|Պնդում 1.8]] ]։ Բայց DAC-ն ուղիղ անկյուն է։ Հետևաբար, BAC-ն նույնպես ուղիղ անկյուն է։
Հետևաբար, եթե եռանկյան մի կողմի քառակուսին հավասար է մյուս երկու կողմերի քառակուսիների գումարին, ապա մնացած երկու կողմերի մեջ պարունակվող անկյունն ուղղանկյուն է։ Սա այն էր, ինչ պետք էր ցույց տալ։