Changes

Տարերք/Գիրք 8

Ավելացվել է 140 բայտ, 13 Դեկտեմբեր
Այսպիսով, մենք դա ապացուցեցինք։
== Պնդում 5 2 ==
Հարթ թվերը միմյանց նկատմամբ ունեն հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
Թող A և B լինեն հարթ թվեր, և թող C և D թվերը լինեն A-ի կողմերը, իսկ E և F (թվերը)՝ B-ի (կողմերը): Ասում եմ, որ A-ն ունի B-ի նկատմամբ հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
[[Պատկեր:Euclid Elements Book 8 Proposition 2.png|center|250px]]
Քանի որ տրված են հարաբերությունները, որոնցով C-ն ունի E-ի նկատմամբ, և D-ն (ունի) F-ի նկատմամբ, թող նվազագույն թվերը՝ G, H, K, շարունակաբար համեմատական լինեն CE, DF հարաբերություններում [Հիմք 8.4], այնպես, որ ինչպես C-ն E-ին է, այնպես էլ G-ն (լինի) H-ին, և ինչպես D-ն (լինի) F-ին, այնպես էլ H-ն (լինի) K-ին: Եվ թող D-ն ստեղծի L՝ E-ն բազմապատկելով:
Ուստի, հավասարության միջոցով, ինչպես G-ն K-ին է, այնպես էլ A-ն (լինում է) B-ին [Հիմք 7.14]: Եվ G-ն ունի K-ի նկատմամբ հարաբերություն, որը կազմված է կողմերի (A-ի և B-ի) հարաբերություններից: Ուստի, A-ն նույնպես ունի B-ի նկատմամբ հարաբերություն, որը կազմված է կողմերի (A-ի և B-ի) հարաբերություններից:
== Պնդում 6 3 ==
Եթե որևէ քանակությամբ շարունակաբար համեմատական թվեր կան, և առաջինը չի չափում երկրորդին, ապա ոչ մի այլ (թիվ) չի չափի որևէ այլ (թիվ):
[[Պատկեր:Euclid Elements Book 8 Proposition 3.png|center|350px]]
Թող A, B, C, D, E լինեն ցանկացած քանակությամբ շարունակաբար համեմատական թվեր, և թող A-ն չչափի B-ին: Ասում եմ, որ ոչ մի այլ (թիվ) չի չափի որևէ այլ (թիվ):