Changes
/* Պնդում 1 */
== Պնդում 1 ==
Եթե կա երկու ուղիղ, և դրանցից մեկը բաժանված է ցանկացած թվով մասերի, ապա այս երկու ուղիղներով կազմված ուղղանկյունը հավասար է չբաժանված ուղղի և բաժանված ուղղի յուրաքանչյուր մասի կազմած ուղղանկյունների գումարին։
[[Պատկեր:ElementsBook2-Propostion1.png|center|200px]]
A-ն և BC-ն երկու ուղիղ են և BC-ն կամայականորեն բաժանված է D և E կետերում: Պնդումն այն է, որ A-ի և BC-ի կազմած ուղղանկյունը հավասար է A-ի և BD-ի, A-ի և DE-ի, A-ի և EC-ի կազմած ուղղանկյունների գումարին.
В կետից գծված է BF ուղիղը, որը ուղղահայաց է BC ուղղին [Պնդում 1.11], իսկ BG ուղիղը հավասար է A ուղղին [Պնդում 1.3]։ G կետով գծված է GH ուղիղը, որը զուգահեռ է BC ուղղին [Պնդում 1.31]: D, E և C կետերով դծված են համապատասխան DK, EL, CH ուղիղները, որոնք զուգահեռ են BG ուղղին [Պնդում 1.31]:
Այսպիսով, BH ուղղանկյունը հավասար է BK, DL և EH ուղղանկյունների գումարին: Ավելին, BH-ն ուղղանկյուն է, որը ձևավորված է A և BC ուղիղներով, քանի որ այն պարփակված է GB և BC ուղիղների միջև միջև, իսկ BG ուղիղը հավասար է A ուղղին: BK ուղղանկյունը ձևավորված է A և BD ուղիղներով, քանի որ այն պարփակված է GB և BD ուղիների միջև, իսկ BG ուղիղը հավասար է A ուղղին: Նմանապես, DL ուղղանկյունը ձևավորվում է A և DE ուղիղներով, քանի որ DK ուղիղը (հավասար է BG-ին) հավասար է A-ին: Վերջապես, EH ուղղանկյունը ձևավորված է A և EC ուղիղներով: Այսպիսով, A և BC ուղիներով կազմած ուղղանկյունը հավասար է A և BD, A և DE, A և EC ուղիղներվ կազմած ուղղանկյունների գումարին:
Այսպիսով, եթե կան երկու ուղիղներ, և դրանցից մեկը բաժանված է կամայական թվով մասերի, ապա այս երկու ուղիղ գծերով կազմված ուղղանկյունը հավասար է չկտրված գծի և մասերից յուրաքանչյուրի կազմած ուղղանկյունների գումարին։ Ահա այն ինչ պահանջվում էր ապացուցել։
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ a (b + c + d + · · · ) = a b + a c + a d + · · · .
== Պնդում 2 ==